If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x+100=108^2
We move all terms to the left:
2x^2+20x+100-(108^2)=0
We add all the numbers together, and all the variables
2x^2+20x-11564=0
a = 2; b = 20; c = -11564;
Δ = b2-4ac
Δ = 202-4·2·(-11564)
Δ = 92912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92912}=\sqrt{16*5807}=\sqrt{16}*\sqrt{5807}=4\sqrt{5807}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{5807}}{2*2}=\frac{-20-4\sqrt{5807}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{5807}}{2*2}=\frac{-20+4\sqrt{5807}}{4} $
| 44=5x€ | | 15x+3=20x+3 | | 1/2x=55/6 | | 2x-1=(-3x)-6 | | 7)-3a=39 | | s×8=64 | | 18n-1=-19 | | 4x+32=112 | | 0.003(2-k)+0.08(k-3)=1 | | 3/5*n-1=23 | | 2x(12+x)/2=x | | 5+1/2x=9 | | 3(2.50+x)=31.50 | | 10x+25x-9=7(5x+10) | | -8x+20=3x-13 | | 7x+24=44 | | 1/x-2+1/x+2=10/x^2-4 | | .35z=2.10z | | y=12y-360 | | .35z=2.10 | | 6x^+5=29 | | 3/4x-2=-7/8x+3 | | -16+n=27 | | 3(u+2)+2u=7(u+1)+9 | | -3=4x+45 | | -12x+-144=-9+-63x | | 4x-24=2x-16 | | 7x+13x-5=5(4x+1) | | 22-(3c+4)=2c+6+c | | 0=-4.9(3)^2+h | | 1/x-2+1/x+2=14/X^2-4 | | 50+x+x+10=180 |